The team tested their approach on an area centered in the Mare Ingenii, a region on the far side of the moon. They fed the algorithm the angles of incoming sunlight from photographs containing shadows taken by NASA’s Lunar Reconnaissance Orbiter (LRO)—a satellite that continuously circles the moon, capturing information—along with elevation data collected by its laser altimeter. The resulting high-resolution terrain model matched the shadowed photographs to a high degree of accuracy, and vastly improved the elevation resolution. The elevation data gathered by the LRO’s laser altimeter has a resolution of 60 meters per pixel; the new method’s final terrain model had a resolution of 0.9 meters per
→ Continue reading at Wired - Science